2009-10-16 南沙的博客
核电发展的现状
我国核电的研发起步于70年代,开始于80年代,90年代初取得突破性进展。1981年11月,国务院批准了秦山核电站一期工程的自主建设,我国核电开始起步。秦山30万千瓦核电厂是我国自行设计建造和营运的第一座原型核电厂,于1991年12月首次并网发电,1994年4月投入商业运行。它的建成投产结束了祖国大陆无核电的历史,是我国和平利用核能的典范,同时也使我国成为继美、英、法、前苏联、加拿大、瑞典之后世界上第七个能够自行设计、建造核电站的国家。
1982年,采用进口成套设备的大亚湾核电站被批准建设,这标志着我国加快了核电建设的步伐。从法玛通公司引进的大亚湾核电站2x98万千瓦M310型压水堆核电机组分别于1994年2月和1994年5月投入商业运行。大亚湾核电站是以外方为总体技术负责方式建设的。
在我国核电建设的第二个建设高潮中,相继开工建设了四个核电项目。分别是:
1、自主设计、自主建造的秦山二期核电站,借鉴和吸收了国外成熟的技术,与同期建设的国外引进核电站相比,投资有较大的降低。
2、 岭澳核电站项目是广东建造的第二座大型商用核电站,同样采用法国法玛通公司的技术,在大亚湾M310型压水堆核电机组的基础上有所改进,设备国产化、管理自主化有较大的提高。
3、秦山三期是从加拿大AECL公司引进的重水堆核电机组。
4、田湾核电站位于江苏连云港,是从俄罗斯引进的压水堆核电机组。1号机组于2007年5月17日正式投入商业运行。
2006年12月,我国与美国西屋公司签约,以全面技术转让的方式引进第三代核电技术AP1000,建设浙江三门、山东海阳核电示范工程,共4台核电机组。这表明我国核电自主化依托项目正式确定选用西屋联合体的AP1000方案,这两个项目也是世界上第一个进入商业化运作的第三代核电技术AP1000项目,计划将于2013年建成。
核电发展的基础
中国作为21世纪世界核电发展最具潜力的国家,目前已经拥有了自己雄厚的发展实力。通过自主设计建造秦山一期、秦山二期核电站,以及与国外合作建造其他核电项目,我们形成了一支专业齐全、配套合理的设计队伍。我国科研设计人员,有针对性地开展了多项攻关课题研究,不但满足了工程建设的需要,也掌握了许多关键技术。通过自主开发和引进相结合,我们已经形成和掌握了较为完整的核电设计软件和技术标准体系,掌握了一些国外核电成熟的设计技术,建立了与核电设计、开发相配套的试验设施,具备了自主设计30万千瓦、60万千瓦压水堆核电站和中外合作设计百万千瓦级压水堆核电站的能力。
我国现已具备了核电主要设备的制造加工能力,能够自主制造核岛主设备中压力容器、蒸汽发生器、稳压器、控制棒驱动机构、堆内构件等。
我国形成了与国际水平接轨的核电工程建设项目管理能力。工程的自主管理和调试能力不断增强。我国已拥有一批具有一定核电站设计、设备制造、建造与运行经验的技术和管理人员,为我国后续核电持续发展奠定了较好的基础。
从五十年代中期以来,我国已经逐步建立了比较完整的核燃料循环体系。随着核电事业的发展,核燃料工业有了进一步发展,初步形成了从铀矿地质勘查、铀矿采冶、铀同位素分离、核燃料元件制造、乏燃料后处理直至核废物处理与处置等完整的核燃料循环工业体系。特别是改革开放二十年来,在与国际广泛交流的基础上,引进和开发了先进的技术和工艺,在核燃料生产的几个主要环节上,实现了更新换代,基本实现了30万、60万、100万千瓦三种容量等级的压水堆核燃料组件的国产化和重水堆燃料组件的国产化,对提高产品质量、降低生产成本等发挥了重要的作用。
我国的核燃料立足国内,核燃料产业的发展与核电发展规模相适应。核电燃料组件依靠国内生产,天然铀资源要利用国内外“两种资源、两个市潮。我国采用闭式燃料循环的路线,通过对核电站乏燃料的处理,提取钚制成铀钚混合燃料供核电站使用,并为以后快中子堆核电站的发展创造条件。
未来十年我国核电建设的技术选型----CPR-1000中国改进型压水堆(1000MW)核电站
根据国家核电发展的长远规划,预计到2020年核电机组装机容量将达到4000万千瓦,在建机组容量为1800万千瓦。
我国核电技术的引进是从法国开始的。法国百万千瓦级核电技术的原型是美国西屋公司标准312堆型,通过改进批量化建设发展成为标准化的CPY技术。为了提高法国核电的出口竞争力,法玛通公司在CPY的基础上形成了安全性和经济性较好的M310堆型。大亚湾核电站引进的就是这种新型的M310堆型,同时我国开展了百万千瓦级大型商用核电技术的消化、吸收和创新工作。
岭澳一期核电站以大亚湾核电站为参考电站,维持热功率和其它主要运行参数不变,结合经验反馈和核安全技术发展要求,通过37项重大技术改进,进一步提高了电站安全水平和技术经济性能,总体性能达到了国际同类型在役核电站的先进水平。
在建的岭澳二期核电站在大亚湾和岭澳一期核电站的技术基础上,根据运行经验反馈和法国同类机组批量改造计划,进行了多项技术改进,其中重大改进有15项。岭澳二期工程按“自主设计、部件采购”模式实施。
由于我国引进、吸收、消化、建设第三代核电站或者自主研发需要工程验证的“二代加”新堆型都需要约十年实际的成功建设和运行示范后,才能开始批量化建设。因此在“十一五”、“十二五”期间,选择“二代加”改进方案小批量建设核电站,既能满足我国核电规划和市场需求,又可以在自主设计、自主制造、自主建设、自主运营方面,通过半速汽轮发电机、全数字化控制技术、大型核设备制造、设计建安调试队伍培训、工程现代化管理手段等方面的技术提升换代,加快第三代核电技术的自主化进程,确保全面实现我国2020年核电建设规划。
我国核电队伍经过秦山、大亚湾(包括岭澳)和田湾三个基地建设和总包出口核电机组到国外的锻炼,已经有能力自主设计30万千瓦和60万千瓦的核电机组,基本有能力自主设计100万千瓦的核电机组。但是我们的技术水平还属于国际上第二代压水堆的核电技术水平。我国中央领导在广泛听取了各有关部门和专家的意见后,做出了我国应积极推进核电发展的决定,并指出:今后我国核电发展应尽快实行大型机组的自主化、国产化,要执行“采用先进技术,统一技术路线”的方针。因此,我们应当在适当继续建造一些第二代改进型机组的同时,以提高核电的安全性和经济性为根本目标,尽快实现我国核电技术的升级换代,即从第二代上升到第三代水平;通过自主开发与引进技术相结合,尽快达到自主设计和建造第三代百万千瓦大型压水堆核电机组的目标,形成先进的、标准化的、能批量建造的产业规模,优质高速发展核电。与此同时,我们还应该看到,国际上已比较成熟的第三代核电机组都还有不足之处和发展空间。例如,AP-1000的非能动安全系统是先进的,但它单机容量只能到1200MW,是有发展空间的;EPR的单机功率虽然已达1600MW,但它的能动安全系统相当复杂,不是发展方向。我国已选定AP-1000为第三代核电自主化依托项目的机型,我们在与国外厂家合作,消化吸收引进技术,建设第三代核电机组的同时,还应针对其不足之处和发展空间,立专项同时进行改进和创新,开发出具有我国知识产权的中国品牌的更加先进的大型核电机组。为此,我国中长期科技发展规划已将“大型先进压水堆和高温气冷堆核电站”列为重大专项。这是国家要全力保证的重大工程,成功后将要产业化批量建造的。
CPR-1000以国内最先进的百万千瓦级主流核电站为参考基础,是安全、可靠、成熟、经济、适用的堆型,无需进行重大论证、开发试验、工程探索和运行考验,是目前国内具有工程可行性的“二代加”改进方案。因此,CPR-1000是在消化吸收第三代核电技术的过渡期内,为了完成国家核电建设规划而需要小批量建设的“二代加”改进堆型的合理现实选择。应该说,在未来十年我国核电建设的技术选型上,CPR-1000是技术成熟且可以随时开工的“二代加”改进方案。
三、CPR-1000拟采用的主要新技术
1、为了满足新安全法规、导则的要求,进一步应用新技术。
2、在岭澳二期基础上进一步完善数字化仪控技术。
3、事故处理规程由事故定向转为状态定向。
4、采用半速汽轮发电机组。原大亚湾与岭澳一期均采用全速汽轮机组,现采用半速汽轮发电机组可具有以下优点:
提高机组效率,继而提升电价竞争力;
半速机组的供货商选择范围较大,可以形成多家厂商竞争的局面。
5、首炉堆芯即采用18个月换料方案。原来大亚湾与岭澳一期的堆芯换料为12个月,换料时间改为18个月后,可减少换料大修次数,降低大修成本,并可提高电站可利用率,增加发电量。
6、反应堆压力容器设计寿命为60年。原来法国(包括美国)的反应堆压力容器设计寿命均为40年,提高到60年后对核电站总的经济效益有很大提高。
7、堆坑注水技术:有利于防止或延迟RPV熔穿;防止堆芯熔融物与混凝土反应,防止安全壳底板熔穿等。
8、主回路应用LBB设计理念。
9、工程建设采用可视化进度控制。
10、采用三维辅助设计。
另外,在CPR-1000的建设与设计目标中还提出:设备本地化比例要﹥70%,单位造价﹤1300美元/千瓦,建设工期 ≤56个月等等。
【核电技术引进状况】
1、三门、海阳核电站(美国AP1000技术)
2、台山核电站(法国EPR技术)
3、田湾核电站 (俄罗斯AES-91技术)
4、秦山三期(加拿大重水堆核电技术)
No comments:
Post a Comment